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User Behaviour Analytics

User Behaviour Analytics is the tracking, collecting and assessing of user data and activities.

Goal: Detect misuse of user credentials.
• Develop probability models for normal

user credential behaviour based on
their historical and current network
usage.

• Use these models to detect anomalous
departures from normal behaviour.
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Data Source - Computer Event Logs
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Computer event logs are a critical resource for investigating security incidents.
• authentication, logons
• processes
• applications/services

Many of these log entries are tied to a user credential action.



Data considerations

Events removed from analysis:
• Account Logoffs;
• Duplicate events/occurring within 30 seconds of each other;
• Events where the originating client is masked by an intermediate e.g. VPN, terminal server,

proxy;
• Automated events.



Filtering automated events

Each unique tuple (user, client, server, eventid) has an associated time series, want to remove those
that have strong periodic behaviour.
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• Calculate the discrete Fourier transform (DFT) for the counting process associated with each
time series using the fast Fourier transform.

• Use Fisher’s g-test to determine significance of maximum peak in the DFT.
• Get an estimate for the most common polling frequency.
• Remove all events that occur within that frequency.



Raw data Automated events removed
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Future Data Sources

• Badge reader data
• HR data
• proxy logs
• e-mail logs



User Behaviour anomaly detection

Initial modelling effort only uses the following event fields for analysis:
• client computer, denoted X;
• server computer, denoted Y;
• event type, denoted E.

Extra fields relating to some event types can be added to the model, such as if the event is a
process, what executable.

We model the sequence of events for each user. Modelling the precise times of the events is the
subject of current research - paper forthcoming.



Model

For each user credential a sequence of events is observed over time:

{(Xt,Yt,Et) : t = 1, 2, . . .}

• Xt = client, Xt ∈ V ,
• Yt = server, Yt ∈ V ,
• Et = event type, Et ∈ E,

where V is the set of computers in the network and E the set of possible event types.



Want to obtain a p-value (anomaly score) for each observed (Xt,Yt,Et).

Split up the model into two components:
• “New” behaviour - user using a computer never used before;

I Degree based popularity model.
• User uses a computer that it’s used before.

I Since the above variables are all categorical, these are most simply modelled using Bayesian
techniques for the category probabilities. Provides a flexible framework, with simple updating.

For each new observed event, use the probability models to obtain a score for how likely the
observed event is according to the users historical behaviour.



Red team data

• Two months of data: 443,934,073 events for 10,759 user credentials.
• Month long red-team exercise in the second month of data, 78 known compromised

credentials.
• Random selection of 1,000 credentials used to demonstrate the method, plus compromised

credentials→ 50,536,677 associated events.

Data available at http://csr.lanl.gov/data/cyber1/

http://csr.lanl.gov/data/cyber1/


Detection of the red team attack
ROC curve and anomaly scores over time for a compromised user.
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Peer-based anomaly detection
• “New” user behaviour currently modelled using node-based popularity - can we do better?
• Incorporating peer-based analysis allows anomaly detection systems to leverage the behaviour

of similar users (peers) to better identify individual profiles, reducing false alarms.
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Recommender systems

• Utilise recommender system algorithms to predict user actions that are unlikely based on
peer-group preferences.

• Allows for different peer groups depending what features of the data are being considered.

The hierarchical Poisson
factorization model

• For n users and m items, let Y be a n× m matrix of counts
where each element Yui is the random variable for the number
of times user u interfaced with item i.

• k-dimensional Poisson factorization model:
I User u represented by R latent factors θu = (θu1, . . . , θuR),
I Item i represented by R latent factors βi = (βi1, . . . , βiR),

Yui ∼ Poisson

(
R∑

r=1

θurβir

)
.



Covariates

Node labels are often available, want to use this information to improve predictive performance.

Extend the model to include covariate information.

Yui∼Poisson

(
R∑

r=1

θurβir +

K∑
k=1

H∑
h=1

φkhxukyih

)
The additional parameters in the model can be interpreted as follows:
• φkh ∈ R+ is an interaction between the k-th user covariate and the h-th host/item covariate,
• xuk ∈ {0, 1} and yih ∈ {0, 1} are binary variables denoting whether the user (or item)

possesses covariate k (or h).



Data

Two data sets:
• Users and the computers they authenticate from - userSource,
• Users and the computers they authenticate to - userDest.

Features:
• Approximately 12, 000 users and 15, 000 computers;
• Split the data into a training set and test set;
• ≈ 15% “new” edges for userDest and ≈ 25% for userSource in test set.

Covariates:
• User Covariates - Credential type, Group, Job title, Location
• Computer Covariates - Group of owner, Subnet, Type

Data available at http://csr.lanl.gov/data/2017.html

http://csr.lanl.gov/data/2017.html


ROC curves for the standard model and the extended model with covariates.
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Adjacency matrix
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Cold Starts

Cold-start: observe a new user or host in the test set, never seen before→ how can we provide
reliable estimates?
• If we know the covariates for the new user or item, can use the learned covariate parameters to

make predictions.

≈ 92% prediction accuracy for both userDest and userSource.



Path Forward

• Combine the two approaches above to provide a robust overall model for UBA.
• Utilise more data sources to get a more holistic view.


